• About
  • Advertise
  • Contact
Wednesday, April 14, 2021
No Result
View All Result
NEWSLETTER
iotphoenix
  • Home
  • Tech

    The Internet of Things figures into this IT leader’s five-year plan

    Why Cisco, Intel, and Qualcomm are funding IoT startups

    7 steps to IoT data security

    IoT adds smarts to IT asset monitoring

    IoT security tips and a cautionary tale

    Electronics should sweat to cool down, say researchers

    Trending Tags

    • IIoT
    • You’re probably doing your IIoT implementation wrong
    • Splunk debuts IIoT product for in-depth analytics
  • Mobile
  • Internet of Things
  • Technology Industry
  • Networking
  • Software
  • Cloud Computing
  • Security
  • Home
  • Tech

    The Internet of Things figures into this IT leader’s five-year plan

    Why Cisco, Intel, and Qualcomm are funding IoT startups

    7 steps to IoT data security

    IoT adds smarts to IT asset monitoring

    IoT security tips and a cautionary tale

    Electronics should sweat to cool down, say researchers

    Trending Tags

    • IIoT
    • You’re probably doing your IIoT implementation wrong
    • Splunk debuts IIoT product for in-depth analytics
  • Mobile
  • Internet of Things
  • Technology Industry
  • Networking
  • Software
  • Cloud Computing
  • Security
No Result
View All Result
iotphoenix
No Result
View All Result
Home Uncategorized

New AI Chips, Managed Services Among Flood from AWS at re:Invent 2020

by iotadmin
February 14, 2021
in Uncategorized
0 0
0
0
SHARES
2
VIEWS
Share on FacebookShare on Twitter
December 10, 2020

Source: AI Trends’ Staff

Amazon Web Services CEO Andy Jassy delivered a three-hour keynote at a virtual event on Dec. 1, the AWS re:Invent 2020 event. Jassy, who has been with Amazon for over 23 years, and who is now seen as the most likely successor to Amazon founder Jeff Bezos, made many, many announcements.

Andrew Jassy, CEO, Amazon Web Services

“There is no way to unpack Andy’s entire keynote as there were so many announcements across computer, storage, networking, AI/ML, developer tools, software and more,” according to an account fromFuturum Researchwritten by Daniel Newman, book author and principal analyst with the firm.

Highlights for enterprise applications includednew R5 instances for EC2, the Amazon Elastic Compute Cloud,for memory-intensive applications such as high-performance databases, distributed web scale in-memory caches, in-memory databases and real time big data analytics.

“AWS continues to develop a comprehensive portfolio of Elastic Compute Cloud (EC2) instances to address the varying needs of customers,” Newman stated. “The diverse platforms give the company a wide breadth, and with the continued development of their Arm variants (Graviton2), the company continues to be more of a juggernaut in silicon.” The Graviton2 processor is a 64-core server chip, first announced several years ago.

Amazon also announcedmultiple options for deploying containers on-premiseswith AWS.ECS Anywhere enables customers to run Amazon Elastic Container Services in their own data centers. Amazon EKS Anywhere provides the ability to run Amazon Elastic Kubernetes Services in their own data centers.

Daniel Newman, author and principal analyst at Futurum Research

“Amazon ECS has gained popularity due to the fact that customers see it as simple to use and deploy,” Newman stated. “However, a setback for AWS has been that often user requirements may require deployments beyond AWS-owned infrastructure. Up to this point, AWS hasn’t had an answer for this. Fans of ECS have sought access to a single experience that allows them to achieve the flexibility that they need.”

Amazon also announced an easier path to migrate from SQL Server databases toAmazon Aurora, a relational database service developed by AWS and first offered in 2014. The announcements included Babelfish for Aurora PostgreSQL, designed to simplify migrations.

“The reason this announcement is so powerful is in its simplicity and its implications,” Newman stated. “Babelfish enables PostgreSQL to understand both the command and protocol database requests from applications designed for Microsoft SQL Server without material impact to libraries, database schema, or SQL statements.” The developers focused on “correctness,” so that applications designed to use SQL Server will behave the same way on PostgreSQL, increasing the competitiveness of AWS against other SQL databases. Amazon announced that an open source version of Aurora is expected to be available in 2021.

In other chip news, Amazon announced thatnew Habana Gaudi-based Amazon EC2 instancesfor machine learning will be offered in the first half of 2021, through a partnership between AWS and Intel. The Gaudi AI accelerators promise 40% better price-performance than the best performing GPU instances today, according to AWS.

“It will work with all the main machine learning frameworks, PyTorch as well as TensorFlow,” and will help the company keep pushing the price-performance envelope and machine learning training advancements, stated Jassy, according to an account inEnterpriseAI. The Gaudi accelerators aredesigned for training deep learning modelsfor workloads that include natural language processing, object detection and machine learning training, classification, recommendation and personalization.

Intel acquired Habana Labs in 2019. Gaudi-based EC2 instances are designed to deliver increased performance and greater cost efficiencies for customers, while allowing developers to build new or port existing training models from graphics processing units to Gaudi accelerators, according to Intel.

AWS Trainium Chip Announced for Machine Learning

Amazon announced a new chip, theAWS Trainium chip, for machine learning. The chip is custom-designed by AWS to deliver the most cost-effective training in the cloud, according to Jassy.

Trainiumchips are optimized for deep learning training workloads for applications including image classification, semantic search, translation, voice recognition, natural language processing, and recommendation engines.Trainiumshould be more cost-effective than the Habana chip, Jassy stated, and will support all the major frameworks including TensorFlow,PyTorchand [Apache]MXnet.

Arun Chandrasekaran, analyst, Gartner

“AWS is expanding its custom chip capabilities for the end-to-end ML lifecycle,” stated Arun Chandrasekaran, an analyst covering cloud native platforms, big data and AI for Gartner, to EnterpriseAI. “Data and analytics is one of the fastest growing use cases in cloud,” and is a computer-intensive workload.

Amazon also announcedSageMaker Clarifyto help reduce bias in machine learning models, according to an account inTechCrunch. “Itallows you to have insight into your data and models throughout your machine learning lifecycle,” statedBratinSaha, Amazon VP and general manager of machine learning.

The tool aims toanalyze the data for bias before data preparation is begun, so bias problems such as varying numbers in different classes, can be identified before the model-building stage. ”We have a set of several metrics that you can use for the statistical analysis so you get real insight into easier data set balance,” Saha stated.

After the model is built, the developer can run SageMaker Clarify again to check for bias that might have entered the model as it was under construction. “So you start off by doing statistical bias analysis on your data, and then post training you can again do analysis on the model,” he stated.

Amazon also announcedDevOps Guru, a managed operations service that aims to improve application availability by detecting operational issues and recommending fixes in an automated manner, according to an account inAnalyticsIndiaMag. The service applies machine learning to collect and analyze application metrics.

Cited benefits of the new service included quick alerts to developers and operators, so they can quickly understand the scope of a problem, automated recommendations for how to fix problems, and no specialized hardware required.

Amazon also announcedLookout for Equipment, an API-based machine learning system that aims to detect abnormal equipment behavior. The system is said to automatically test possible combinations and build an optimal machine learning model to learn the model behavior of the equipment.

Customerscan bring in historical time series data and past maintenance events data generated from industrial equipment that can have up to 300 data tags from components such as sensors and actuators per model.

Read the source articles fromFuturum Research,EnterpriseAI,TechCrunchandAnalyticsIndiaMag

Download Premium WordPress Themes Free
Download Premium WordPress Themes Free
Download Premium WordPress Themes Free
Download WordPress Themes Free
free download udemy course
download karbonn firmware
Premium WordPress Themes Download
udemy free download
iotadmin

iotadmin

Next Post

It is Time to Future-Proof Your Cleaning Processes

Recommended

FTC charges game developer with misusing money raised on Kickstarter

2 years ago

Wearable tech in the enterprise grows, but few workplace uses exist

2 years ago

Popular News

    Buy CBD Online

    • CBD Oils
    • CBG
    • Sleep spray
    • CBD gummies
    • buy CBD oil
    • Dab pens
    • CBD Patches
    • CBD pills
    • Pet CBD
    • CBD for pain
    • CBD for sleep
    • CBD Flower
    Facebook Twitter Youtube RSS

    Newsletter

    Subscribe our Newsletter to get our latest updates.

    Loading

    Category

    • Analysis
    • Careers
    • Cloud Computing
    • Data Center
    • Data Centers
    • Databases
    • Guest Opinions
    • Hardware
    • Infrastructure
    • Insider Insights
    • Internet of Things
    • IT Leadership
    • Mobile
    • Networking
    • New Connections
    • News
    • Open Source
    • Opinion
    • Research
    • Security
    • Software
    • Software Development
    • Technology Industry
    • Uncategorized
    • Unified Communications
    • Videos
    • Virtualization
    • WAN

    About Us

    Advance IOT information site of Phoenix USA

    © 2019-20 iotphoenix.com.

    No Result
    View All Result
    • Home
    • Internet of Things
    • Security
    • WAN
    • Cloud Computing
    • Data Centers
    • Mobile
    • Networking
    • Software
    • Technology Industry

    © 2019-20 iotphoenix.com.

    Login to your account below

    Forgotten Password?

    Fill the forms bellow to register

    All fields are required. Log In

    Retrieve your password

    Please enter your username or email address to reset your password.

    Log In